Skip to contents

Fetches the datasets produced by the module. For each cohort this will be the simulation timecourse and the event table

Usage

CTS_fetch_ds(state, meta_only = FALSE)

Arguments

state

CTS state from CTS_fetch_state()

meta_only

Include only metadata and not the dataset (default FALSE)

Value

Character object vector with the lines of code

list containing the following elements

  • isgood: Return status of the function.

  • hasds: Boolean indicator if the module has any datasets

  • msgs: Messages to be passed back to the user.

  • ds: List with datasets. Each list element has the name of the R-object for that dataset. Each element has the following structure:

    • label: Text label for the dataset

    • MOD_TYPE: Short name for the type of module.

    • id: module ID

    • DS: Dataframe containing the actual dataset.

    • DSMETA: Metadata describing DS

    • code: Complete code to build dataset.

    • checksum: Module checksum.

    • DSchecksum: Dataset checksum.

Examples

# For more information see the Clinical Trial Simulation vignette:
# https://ruminate.ubiquity.tools/articles/clinical_trial_simulation.html
# None of this will work if rxode2 isn't installed:
# \donttest{
library(formods)
if( Sys.getenv("ruminate_rxfamily_found") == "TRUE"){

# This will populate the session variable with the model building (MB) module
sess_res = MB_test_mksession()
session = sess_res[["session"]]

id     = "CTS"
input  = list()

# Configuration files
FM_yaml_file  = system.file(package = "formods", "templates", "formods.yaml")
MOD_yaml_file = system.file(package = "ruminate", "templates", "CTS.yaml")

state = CTS_fetch_state(id              = id,
                        input           = input,
                        session         = session,
                        FM_yaml_file    = FM_yaml_file,
                        MOD_yaml_file   = MOD_yaml_file,
                        react_state     = NULL)


# Fetch a list of the current element
current_ele = CTS_fetch_current_element(state)

# You can modify the element
current_ele[["element_name"]] = "A more descriptive name"

# Defining the source model
state[["CTS"]][["ui"]][["source_model"]] = "MB_obj_1_rx"
current_ele = CTS_change_source_model(state, current_ele)

# Single visit
current_ele[["ui"]][["visit_times"]]                 = "0"
current_ele[["ui"]][["cts_config_nsteps"]]           = "5"

# Creating a dosing rule
state[["CTS"]][["ui"]][["rule_condition"]]           = "time == 0"
state[["CTS"]][["ui"]][["rule_type"]]                = "dose"
state[["CTS"]][["ui"]][["action_dosing_state"]]      = "central"
state[["CTS"]][["ui"]][["action_dosing_values"]]     = "c(1)"
state[["CTS"]][["ui"]][["action_dosing_times"]]      = "c(0)"
state[["CTS"]][["ui"]][["action_dosing_durations"]]  = "c(0)"
state[["CTS"]][["ui"]][["rule_name"]]                = "Single_Dose"

# Adding the rule:
current_ele = CTS_add_rule(state, current_ele)

# Appending the plotting details as well
current_ele[["ui"]][["fpage"]]             = "1"
current_ele[["ui"]][["dvcols"]]            = "Cc"

# Reducing the number of subjects and steps to speed things up on CRAN
current_ele[["ui"]][["nsub"]]              = "2"
current_ele[["ui"]][["cts_config_nsteps"]] = "5"

# Putting the element back in the state forcing code generation
state = CTS_set_current_element(
  state   = state,
  element = current_ele)

# Now we pull out the current element, and simulate it
current_ele = CTS_fetch_current_element(state)
#current_ele = CTS_simulate_element(state, current_ele)

# Next we plot the element
current_ele = CTS_plot_element(state, current_ele)

# Now we save those results back into the state:
state = CTS_set_current_element(
  state   = state,
  element = current_ele)

# This will extract the code for the current module
code = CTS_fetch_code(state)
code

# This will update the checksum of the module state
state = CTS_update_checksum(state)


# Access the datasets generated from simulations
ds = CTS_fetch_ds(state)

# CTS_add_covariate
state[["CTS"]][["ui"]][["covariate_value"]]            = "70, .1"
state[["CTS"]][["ui"]][["covariate_type_selected"]]    = "cont_lognormal"
state[["CTS"]][["ui"]][["selected_covariate"]]         = "WT"
current_ele = CTS_add_covariate(state, current_ele)

# Creates a new empty element
state = CTS_new_element(state)

# Delete the current element
state = CTS_del_current_element(state)
}
#> → ASM: including file
#> → ASM:   source: file.path(system.file(package="onbrand"), "templates", "report.docx")
#> → ASM:   dest:   file.path("config","report.docx")
#> → ASM: including file
#> → ASM:   source: file.path(system.file(package="onbrand"), "templates", "report.pptx")
#> → ASM:   dest:   file.path("config","report.pptx")
#> → ASM: including file
#> → ASM:   source: file.path(system.file(package="onbrand"), "templates", "report.yaml")
#> → ASM:   dest:   file.path("config","report.yaml")
#> → ASM: State initialized
#> → ASM: setting word placeholders: 
#> → ASM:   -> setting docx ph: HEADERLEFT = left header
#> → ASM:   -> setting docx ph: HEADERRIGHT = right header
#> → ASM:   -> setting docx ph: FOOTERLEFT = left footer
#> → ASM: module isgood: TRUE
#> → MB: including file
#> → MB:   source: file.path(system.file(package="onbrand"), "templates", "report.docx")
#> → MB:   dest:   file.path("config","report.docx")
#> → MB: including file
#> → MB:   source: file.path(system.file(package="onbrand"), "templates", "report.pptx")
#> → MB:   dest:   file.path("config","report.pptx")
#> → MB: including file
#> → MB:   source: file.path(system.file(package="onbrand"), "templates", "report.yaml")
#> → MB:   dest:   file.path("config","report.yaml")
#> ! MB: User-defined model: /Users/jmh/projects/ruminate/github/ruminate/docs/reference/user_model.R not found (skipping)
#> ! MB: User-defined model: /Users/jmh/projects/ruminate/github/ruminate/docs/reference/user_model.ctl not found (skipping)
#> → MB: module checksum updated:f7de2055542d3ff1b085fafc2d30a1f8
#> → MB: State initialized
#> → MB: loading model idx: 1
#>  
#>  
#>  parameter labels from comments are typically ignored in non-interactive mode
#>  Need to run with the source intact to parse comments
#> → MB: model checksum updated: 8a57a89282760a5837456e37436b5500
#> → MB: module checksum updated:f3ae208d745aa75466752b2da37cefee
#>  
#>  
#>  parameter labels from comments are typically ignored in non-interactive mode
#>  Need to run with the source intact to parse comments
#> → MB: model checksum updated: 21d55fb9cac5e66f89b4e256b8c97b8e
#> → MB: module checksum updated:13102f8946cb4c45f6b88a58a0752d5e
#> → MB:   -> setting name: One compartment model
#> → MB:   -> setting time scale: hours
#> → MB:   -> setting base from: user
#> → MB:   -> setting catalog selection: 
#> → MB:   -> setting base model id: manual
#> → MB:   -> setting base model name: manual
#> → MB: model checksum updated: ded531c34025aa43a2155fe86bdc6bd8
#> → MB: module checksum updated:0d0644a00919bf96cbf7214118ba9245
#> → MB: added element idx: 1
#> → MB: loading model idx: 2
#>  
#>  
#>  parameter labels from comments are typically ignored in non-interactive mode
#>  Need to run with the source intact to parse comments
#> → MB: model checksum updated: ef43f03ca0ecc23eef128783121b26c9
#> → MB: module checksum updated:7fd7cc53a60f81bf4155e5e464f95a05
#> → MB:   -> setting name: PK Biomarker
#> → MB:   -> setting time scale: days
#> → MB:   -> setting base from: user
#> → MB:   -> setting catalog selection: 
#> → MB:   -> setting base model id: manual
#> → MB:   -> setting base model name: manual
#> → MB: model checksum updated: e7192253477fb2cb76acdd9cbd514471
#> → MB: module checksum updated:4515b5761c6ce70d2552537372e3b5b8
#> → MB: added element idx: 2
#> → MB: module isgood: TRUE
#> → # preload_complete is good: TRUE ------------------------------------------
#> → CTS: including file
#> → CTS:   source: file.path(system.file(package="onbrand"), "templates", "report.docx")
#> → CTS:   dest:   file.path("config","report.docx")
#> → CTS: including file
#> → CTS:   source: file.path(system.file(package="onbrand"), "templates", "report.pptx")
#> → CTS:   dest:   file.path("config","report.pptx")
#> → CTS: including file
#> → CTS:   source: file.path(system.file(package="onbrand"), "templates", "report.yaml")
#> → CTS:   dest:   file.path("config","report.yaml")
#> → CTS: source model change detected
#> → CTS:  > covariates reset
#> → CTS: cohort checksum updated: 379c50eaa2d6857e372cff3c58f93250
#> → CTS: module checksum updated: 71f63fa526c676a0bc2b5f619013e521
#> → CTS: State initialized
#> → CTS: add rule success
#> → CTS: rule added
#> → CTS: cohort checksum updated: 9b082e42efeb70e2354459ddf8f9ee5b
#> → CTS: module checksum updated: 09317c67f3632860034f412b572cdd47
#> → CTS: CTS_plot_element()
#> → CTS: # Plotting timecourse
#> → CTS: CTS_obj_1_fgtc =                                 
#> → CTS:   plot_sr_tc(sro = CTS_obj_1_simres,
#> → CTS:     xcol         = "time",         
#> → CTS:     xlab_str     = "Time",         
#> → CTS:     fncol        = 4,                       
#> → CTS:     fnrow        = 2,                       
#> → CTS:     dvcols       = "Cc",
#> → CTS:     fpage        = 1)
#> → CTS: 
#> → CTS: # Plotting events
#> → CTS: CTS_obj_1_fgev =                                 
#> → CTS:   plot_sr_ev(sro = CTS_obj_1_simres,
#> → CTS:     xcol         = "time",         
#> → CTS:     xlab_str     = "Time",         
#> → CTS:     fncol        = 4,                       
#> → CTS:     fnrow        = 2,                       
#> → CTS:     evplot       = 1,
#> → CTS:     fpage        = 1)
#> → CTS: No simulation available, you need to run the simulation first.
#> → CTS: cohort checksum updated: 8c9e494b2c26d4fce36068d7d952fa42
#> → CTS: module checksum updated: 68e1b0baff9685e6a1151803d9f65f18
#> → CTS: source model change detected
#> → CTS:  > covariates reset
#> → CTS: cohort checksum updated: e8f49839acb2aa78efacc6e08b1bb929
#> → CTS: module checksum updated: f9986890aa3e207c371fe6d0349293e3
# }